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The Galerkin-Petrov method is applied to the determination of the ground 
state energy of the beryllium atom. The basis set of the coordinate subspace 
consists of correlated wave functions of the combined configuration-interaction- 
Hylleraas type. The basis set of the projective subspace is of the configuration- 
interaction type. The usefulness of a previously proposed way of characteriza- 
tion of pairs of subspaces has been further confirmed. Experience in construct- 
ing close pairs of subspaces gathered in the case of two-electron systems is 
used for the larger system. Two methods for constructing pairs of subspaces 
are used in the calculations. 
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1. Introduction 

The method of moments, as proposed by Szondy [1, 2] more than a decade ago, 
represents an interesting alternative to the variational procedure of obtaining good 
approximations to the eigensolutions of the Schr6dinger equation. This method 
offers the attractive possibility of considerable simplifications of the integral 
computations which hamper the application of the variational method to more 
complicated atoms and molecules. Very promising seems to be a special realization 
of the method of moments, known as the Galerkin-Petrov (GP) method [3]. 
Despite the very accurate results obtained in many cases, some workers arrived 
at rather pessimistic conclusions about the reliability of the GP method [4, 5]. In 
our recent paper ([-6], hereafter referred to as Paper I) we have proposed a strategy 
for the reliable determination of wavefunctions and energy levels of many-electron 
systems by means of the GP method. It was found that the accuracy of the results 
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may be related to an index describing the "distance" between the coordinate and 
projective subspaces used in the formulation of the method. The applicability of 
the method was demonstrated for the two-electron atom. 

In the present paper we apply the method of Paper I to the determination of the 
approximate wavefunction and energy for the ground state of the beryllium atom. 
The basis set of the coordinate subspace consists of correlated wavefunctions of 
the combined configuration-interaction-Hylleraas (CI-HY) type. The projective 
basis, in turn, is of the configuration interaction type chosen according to our 
method. The motivation of this study is to demonstrate the usefulness of the 
strategy proposed in Paper I in the case of a four-electron system for which, unlike 
the two-electron one, all simplifications pertinent to the GP method can be fully 
exposed. On the other hand, all mathematical difficulties involved in introducing 
r/idependent terms into the basis set of the projection subspace for atoms with an 
arbitrary number of electrons occur in the beryllium atom. Thus the present 
calculation is a test of the general applicability of the theoretical and computa- 
tional method developed. Another purpose of this work is to show that experience 
in the construction of close pairs of subspaces gathered in the case of two-electron 
systems can be utilized for larger systems. In the next section we present some 
details of the method of calculation and specify the form of the basis functions 
used. In order to get a better insight into the simplifications inherent in the GP 
method, we compare (Sect. 2.2) the types of integrals which arise in our scheme 
with the integrals of the variational method using the CI-HY basis. In Sect. 3 we 
will present the results of calculations using two projective basis sets. The first one 
is constructed according to a rule described ha Sect. 2.1. In order to reduce the 
distance between the projective and coordinate subspaces a second basis set 
obtained by means of a projection procedure has been used. 

2. Method of Calculation 

The essential idea of the GP method when applied to the Schr6dinger equation 
has been presented in Paper I. For completeness, however, we include a very brief 
outline of this method in our discussion. 

Let us choose the basis sets { /}i=1 and {Zi}i=l q~ " " defining the coordinate and 
projective subspaces respectively. The approximate wavefunctions may be written 

~b= ~ ci~o~ (1) 
i= l  

where the coefficients c~ are determined from the set of equations [6] 

(M- ~H- El)C= 0 (2) 

where the matrices H and M, defined by the elements Hk~= (Xk, H~p~) and M~k= 
(Zk, CPi), represent the Hamiltonian and mixed overlap matrices respectively. We 
use the notation E" for the lowest eigenvalue of  the nonsymmetrical problem (2). 

It has been shown in Paper I that the results of the GP method, as well as their 
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reliability, depend on the choice of  pairs of subspaces involved. It is convenient to 
characterize the distance between the subspaces in terms of the index R defined as 

R = (~" (1 - M,2)M, - 2)x/2. (3) 
i 

where the M~ numbers may be obtained by diagonalizing the matrix 

F'= A'~ 1/2 M+ Az 1MA; ,/2 (4) 

where A, and A z are metric matrices of the basis sets {~&} and {Z~} respectively, 
i.e. (A~o)ik=(qh, r (Az)~k=(Xi, Xk)" 

It was shown in Paper ! that to obtain reliable results one should choose the 
coordinate and projective subspaces in a way that the R-value be as small as 
possible. Moreover, in order to ensure the n-convergence of the energy the basis 
sets should be constructed in a manner that the increase of  the R index would be 
sufficiently slow when n increases. 

2.1. Basis Sets 

The basis set of the coordinate subspace consists of the combined configuration- 
interaction-Hylleraas (CI-HY) functions defined by Sims and Hagstrom [-7] in 
their study of the ground state of the beryllium atom. These four-particle functions 
may be written in the form 

4 

~Ok=O(L2)OA(Xlrff ]--[ ~ks(rs)). (5) 
s = l  

In (4), O(L 2) is an orbital momentum projection operator r8] and 0 A is the well 
known antisymmetrization operator. Also, X 1 is a spin function of  the form 

x l  = �89 - & ~2) (~3/L - r ~4) 

corresponding to the eigenvalues S = S z = 0 of the spin angular momentum. In 
(5) ~ks(r) refers to a basis orbital in the configuration considered. The orbital 
basis consists of  STO's of the general form 

(20,+ 1/2 r "-1 Yt,m(O, ~p) (6) 
~( r )=  [(2n) !] 1/2 e -~r 

where Yz, m denotes a normalized spherical harmonics. 

In the present study we restricted the coordinate basis set to the first 15 members 
of the set used by Sims and Hagstrom [-7] : 

(1) ls2s "2, (2) 1s22p "2, (3) lsZ2s"2rt2, 

(4) ls22p"2ra2, (5) 2sls2s "2, (6) lsZ2s"2r23, 

(7) lsZls"2s'r23, (8) ls22s"Zr34, (9) 3sls2s "2, 
(10) lsZls"2s ", (11) 2 it2 2 ls 2s rt2 , (12) 2s22s "2, 

(13) 2sls2p "2, (14) 1s26s"2s ", (15) lsZ5s'2s ". 

(7) 
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The notation of  Sims and Hagstrom [7] has been used. The nonlinear parameters 
(s = 3.6847, (s,, = 0.9562, (p = 6.2, (r = 1.1, were used. 

Let us further define the projective basis. It includes functions of  the pure configura- 
tion- interaction type i.e. it may consist only of  the subset of  functions defined by (5) 
for which Vk = 0. We include into the projective basis all uncorrelated functions 
(v k = 0) listed in (7). To supplement this set we utilized an observation made in the 
case of  two-electron systems. In Sects. 4.1 and 4.2 of  Paper I we have demonstrated 
that one can get small R values if each basis function of  the coordinate subspace 
depending on r12 has a counterpart in the projective subspace depending on r22 . 
It is a well known fact that due to the relation 

1 

rZij- -r2, +r]-(8rc/3)rirj ~, Y*r.(Oi, q~i)Yl,.(Oj' q)j) (8) 
r a = - -  i 

functions comprising even powers of  r o are equivalent to configuration interaction 
functions. As an illustration of  the general procedure we consider the function (3) 
from the set (7). We have by (6) and (8) 

ls22s"2rx2 = [ls2r1212s "2 ~ {3sls2s "2, ls3s2s "2, 2p'22s "2 } (9) 

The first two functions in the latter set are linearly dependent. Furthermore, the 
first function is already included in the projective basis, because it is an un- 
correlated member of  the set (7) (function (9)). Hence, we can use only the third 
function of  the set in (9) 

lsZ2s"2r12 ~ 2p'22s "2. 

The same reasoning applied to the functions (3), (4), (6), (7), (8) and (11) of the 
coordinate basis leads to the projective basis functions 2p22s "2, 2p22p "2, ls2p3p"2s", 
1s2p2p"2s", 1s23p "2, 3p22S "2 respectively. Hence, a basis set consisting of  15 
members is found. 

However, in order to apply the projection procedure for obtaining the projective 
subspace, we increase the number of  the set just mentioned. As the program for 
evaluating the integrals was not adopted to handle d and f orbitals, which we 
expect to be very effective in our procedure, we had to add configurations of  the 
angular structure similar to the existing ones. The following configurations were 
used: 

(16) 5sls2s "2 (17) ls24s"2s " (18) 5slsls"2s" (19) 3sls4s"2s" 
(20) ls23s2s" (21) 3slsls"2s" (22) 3sls3s"2s" (23) 3s22s "2 
(24) Is24s "2 (25) 4p2p2s "2 (26) 4p2p2p "2 (27) ls2p4p"Zs" 
(28) ls4p2p"2s" (29) ls24p"2p" (30) 5p3pZs "2 (31) 5p3p2p "2 
(32) ls3p5p"2s" (33) ls5p3p"2s" (34) ls25p"3p ". 

2.2. Integral Treatment 

Before proceeding to details of  the integral treatment, let us compare the types of 
integrals which arise in our GP  scheme with the integrals of  the variational method 
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using the CI-HY basis. The integrals arising in the latter approach can be written 
in the general form [9] 

.f 01(rl)f22(r2)f23(ra)f24(r4)R dr 1 dr 2 dr a dr 4 (10) I= 

where/~ is an operator of one of the following forms: 

(a) ~12, (b)/~12r~3 , (c)~12rE3r13, (d) t u s t u (11) t u ~ 2 r l a r 1 4  , (e) r12rEar34. 

The operator (a) gives rise to two-electron integrals, whereas the operators (b) 
and (c) lead to three-electron integrals. Finally, the operators (d) and (e) give rise 
to four-electron integrals. There have been several papers dealing with the problem 
of evaluation of the integrals depending explicitly on the interelectronic co- 
ordinates. For references to the rich literature in this field we refer to the papers of 
Sims and Hagstrom [9]. Some interesting procedures have been recently proposed 
by Muszyfiska [10, 11]. The most effective methods of handling the integrals (10) 
are based on an expansion of the rij variables in a Fourier-Legendre series. The 
basic integrals arising in this approach are listed in [9]. An analysis of the expres- 
sions for the integrals (10), when various/~'s are used, indicate that the compu- 
tational difficulties rapidly increase when proceeding from the two-electron 
integrals to the three- and four-electron ones. The most simple cases represent the 
two-electron integral and the integral involving the operator (b) of (11). The 
evaluation of the second type of three-electron integrals, i.e. (c), is considerably 
more complicated. 

The types of integrals which have to be evaluated in the case of the GP method for 
the basis sets discussed above represent a subset of the integrals arising in the 
variational approach using the CI-HY basis. One can easily see that all integrals 
which arise in our approach have either the form of a two-electron integral with 
the operator (1 la) or a three-electron integral with the operator (llb). As was 
already stated these integrals represent the most simple cases from the numerical 
point of view. 

An irreducible tensor operator formalism applied to the expansion of ri~ into 
Fourier-Legendre series allows for a straightforward separation of the integration 
over angular and radial coordinates. In effect all the many-electron integrals have 
been represented as linear combinations of products of certain spherical co- 
efficients Woi and radial integrals Io~ [10, 11]. The Ioi radial integrals may be 
expressed by means of auxiliary integrals W, V and A. The problem of evaluation 
of the V and W auxiliary integrals was discussed by many authors [10-15] and 
very accurately by Sims and Hagstrom [9]. It seems to be reasonable to compute the 
auxiliary integrals V and W only once and to store them in a computer peripheral 
memory for use in computing the radial integrals. A recursive computational 
scheme of the tabulation of V and W has been given by Sims and Hagstrom [9]. 
However, when one of the parameters either in V or in W is negative, numerical 
tests showed a considerable loss of precision due to substruction. A numerically 
stable computational procedure for the V integrals was already given in the work 
[9]. In turn, the W integrals are calculated via the series formula proposed by one 
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of  the present authors [-11]. To reduce the round-off errors, the program for 
calculation of W is written in such a way that the smallest terms are summed first. 

3. Results and Discussion 

The results obtained in the case of  the basis sets described above are displayed in 
Table 1. For  a given dimension n, of the subspaces involved the coordinate basis 
set consists of the n first members of the set (7). The basis sets of  the respective 
projective subspaces comprise the n first members of  the set defined in Sect. 2.1. 
Although we are mainly interested in the GP energies, the variational energies 
E'  and Ep obtained for the coordinate and projective subspaces respectively are 
also set out. The former results are taken from the work of Sims and Hagstrom [7]. 
The last column of  Table 1 shows the R-values for each pair of  subspaces. We see 
from the table that the GP energy, E", decreases from - 14.59688 to - 14.65714 
as we go from n = 2 to n = 15. These results should be compared with the estimate 
of the "exact" non-relativistic energy E =  - 14.6669 [16] and the Hartree-Fock 
energy E n F = -  14.57302 (all energies in the present paper are given in atomic 
units). It is interesting to note that in the case n = 15 the GP results yield 90 percent 
of  the correlation energy, Ecorr = E - E n v .  Starting from n = 6 the results for E" 
exhibit systematic n-convergence. The small perturbation in the monotonous 
decrease of  the GP energy observed in the case n = 6 can be explained by the sharp 
increase of  the R value when proceeding from n =  5 to n = 6. Comparison of  
columns two, three and four reveals that for n >I 5 the values of E" are in the range 
bounded by their variational counterparts E'  and Ep. In all cases, however, the 
GP-energies are considerably closer to the variational results for the correlated 
basic set, E'.  

The last colunm of Table 1 shows that our method of constructing pairs of close 
projective and coordinate subspaces proved to be effective. All the R-values are 

Table 1. GP-energies (E"), variational energies (E', Ev) 
and R-values for the ground state of Be 

n - E "  - E  '~ - E p  R 

2 14.59688 14.59688 14.59688 0 
3 14.63122 14.62296 14.61696 1.606 
4 14.63412 14.62513 14.61867 2.408 
5 14.63461 14.63928 14.61868 1.898 
6 14.63457 14.63928 14.61890 7.477 
7 14.63982 14.64528 14.61968 17.201 
8 14.64085 14.64829 14.62225 17.339 
9 14.64636 14.65104 14.63148 17.257 

10 14.64643 14.65373 14.63169 8.801 
11 1 4 . 6 4 8 0 1  14.65803 14.63329 8.901 
12 14.65426 14.66007 14.64495 8.866 
13 14.65432 14.66147 14.64495 8.708 
14 14.65494 14.66164 14.64527 5.329 
15 14.65714 14.66173 14.64720 2.366 

Results of Sims and Hagstrom [7]. 
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Table 2. Numerical results for the projection method 
of generation of the projective basis 

n= 13 n= 15 

m - E "  R -E"  R 

13 14.65432 8.71 - -  - -  
15 14.65697 1.46 14.65714 2.37 
19 14.65782 1.41 14.65807 1.46 
24 14.65844 1.36 14.65869 1.40 
29 14.65882 1.00 14.65909 1.05 
34 14.65900 0 .79  14.65926 0.81 

small and, except for the case mentioned above, change rather smoothly when n 
changes. Notice that the changes of R could be still smoothed out by a proper 
change of nonlinear parameters.  

Another  possibility of  constructing "close" pairs of  projective and coordinate 
subspaces represents the projection procedure described in Paper I. In this method 
the basis functions of  the n-dimensional projective subspace are obtained by 
projecting individual basis functions onto a given m-dimensional subspace (m >~ n). 
The basis of  the latter subspace has been described in Sect. 2.1. In Table 2 we 
present the GP energies obtained for two choices of  the coordinate subspace 
(n = 13, 15) and various dimensions of  the subspaces used in the projection pro- 
cedure. The case n = m corresponds to the direct GP approach discussed in the 
first part  of  this section. We can see from the table that for a given n the increase of  
m results in a systematic decrease of  R. This behaviour causes an improvement  of 
the GP energies. Comparison of the results for n = 13 and n = 15 reveals that in the 
case of  similar R values the latter are always lower than the former. The results of  
Table 2 compare  well with the energies obtained in Paper I for the two electron 
case. As we have already mentioned above our choice of  the m-dimensional sub- 
space does not seem to be optimal. It  could be improved by adding configurations 
comprising d a n d f t y p e  orbitals. 

4. Concluding Remarks 

In this paper  we have demonstrated that our strategy for the reliable determina- 
tion of  wavefunctions and energies of  many-electron systems by means of  the GP  
method works well in the case of  the Be a tom for which all the drastic simplifica- 
tions inherent in the method can be fully used. We have also shown that some 
experience in the construction of close pairs of  subspaces gained in the case of  
two-electron atoms may be useful when considering larger systems. The results 
presented above confirm our previous conclusion that the GP  method, if applied 
in a controlled way, leads to reliable results. 

In the present paper the basis functions of  the coordinate subspace are taken from 
the work of Sims and Hagst rom [7]. We have done this purposely to get the 
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possibility of comparison of our results with the variational ones. It is important, 
however, for the prospective quantum chemical applications of the GP method, 
to have a scheme of determination of nonlinear parameters. This problem will be 
treated in a forthcoming paper. 
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